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Abstract

Zero-shot learning (ZSL) is an extreme case of transfer learn-
ing that aims to recognize samples (e.g., images) of un-
seen classes relying on a train-set covering only seen classes
and a set of auxiliary knowledge (e.g., semantic descriptors).
Existing methods usually resort to constructing a visual-to-
semantics mapping based on features extracted from each
whole sample. However, since the visual and semantic spaces
are inherently independent and may exist in different mani-
folds, these methods may easily suffer from the domain bias
problem due to the knowledge transfer from seen to unseen
classes. Unlike existing works, this paper investigates the
fine-grained ZSL from a novel perspective of sample-level
graph. Specifically, we decompose an input into several fine-
grained elements and construct a graph structure per sample
to measure and utilize element-granularity relations within
each sample. Taking advantage of recently developed graph
neural networks (GNNs), we formulate the ZSL problem to
a graph-to-semantics mapping task, which can better exploit
element-semantics correlation and local sub-structural infor-
mation in samples. Experimental results on the widely used
benchmark datasets demonstrate that the proposed method
can mitigate the domain bias problem and achieve compet-
itive performance against other representative methods.

Introduction
Recent years have seen a rise of interest in zero-shot learn-
ing (ZSL) which imitates human ability to recognize un-
seen classes without observing real samples (Kodirov, Xi-
ang, and Gong 2017; Yu et al. 2018; Guo and Guo 2019;
Zhu et al. 2019; Chen et al. 2021c; Kim, Shim, and Shim
2022; Liu et al. 2022; Su et al. 2022; Zhao et al. 2022;
Xu et al. 2022). Specifically, ZSL takes utilization of seen
classes with labeled samples and auxiliary knowledge be-
tween seen and unseen classes to achieve the recognition.
This knowledge, e.g., semantic descriptions that exist in a
high dimensional feature space, can represent meaningful
high-level and per-class information about samples. In ZSL,
the common practice is to map an unseen class sample from
its original feature space, e.g., visual space, to the semantic
space by reusing a mapping function trained on seen classes.
With such mapped semantic features (representation), we
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Figure 1: A comparison of our method (red stream) with
conventional ZSL methods (blue stream) and fine-grained
ZSL methods (purple stream, zoom in for a better view).

can then search for the most closely related (e.g., by simi-
larity metrics) description whose corresponding class is as-
signed to the sample. In practice, the ZLS can be further
restricted to the classic ZSL and generalized ZSL (GZSL),
where the former only considers the recognition on unseen
classes during inference, while the latter can also generalize
well to novel samples from seen classes.

In ZSL, one non-negligible issue is that the visual and
semantic spaces are inherently independent and may exist
in entirely different manifolds. This issue brings about the
domain bias problem (Fu et al. 2015) when generalizing
the learned knowledge, i.e., trained mapping function, from
seen to unseen classes, where the obtained semantic fea-
tures of unseen class samples may be biased to seen classes
and degrade the performance of ZSL models. Recently, sev-
eral works have been proposed to mitigate the domain bias
problem and obtained some promising results. For exam-
ple, some methods consider directly doing the alignment
between visual-semantic spaces when constructing the map-
ping function (Zhang and Saligrama 2015; Schonfeld et al.
2019; Guo and Guo 2020). Differently, some methods try to
synthesize unseen class samples or features based on gen-
erative models, e.g., GANs or VAEs, and involve them in
the training process (Xian et al. 2018; Huang et al. 2019;



Zhao et al. 2022; Feng et al. 2022). Some other methods ap-
ply the encoder-decoder structure to maintain the robustness
of the mapping function (Kodirov, Xiang, and Gong 2017;
Yu et al. 2018). Most recently, several fine-grained meth-
ods (Xie et al. 2019; Huynh and Elhamifar 2020) concate-
nate the features of the whole sample with local regions to
enhance the representations, while the relation among local
regions is not addressed.

As far as we know, existing methods usually train the
mapping functions with either whole sample features or con-
catenated fine-grained features. Such a training scheme may
ignore the subtle element-semantics correlation and local
sub-structural information in samples from different classes.
Concretely, our motivations are two-fold: ❶ Taking the seag-
ull as an example (Figure 1), it may have some special ele-
ments such as beak, nape, feet, etc. These elements are more
accurate visual characteristics of bird species and can usu-
ally correspond ‘one-to-one’ with the semantic description
like yellow-beak, white-nape, gray-tail, etc. Such element-
semantics correlation can potentially facilitate the recogni-
tion; and ❷ There exist certain connectivity among these el-
ements which establishes unique topological structures such
as the relative position/distance of each fine-grained ele-
ment. Moreover, these elements may also have some mu-
tual influences. For example, the beak-feet pair usually has a
stronger connection and co-occurrence in seagull, and thus
a properly adopted propagation between these elements can
potentially enhance the representation of each other.

In this paper, we suggest that the above intrinsic proper-
ties are big pluses for the more accurate and robust visual-
semantics mapping, and for the first time, we propose a
novel sample-level graph-based ZSL framework with im-
proved performance. Specifically, we first decomposes an
input into several fine-grained elements, i.e., via key-point
localization and cropping, and then convert it into a sample-
level graph considering its topological structure and mutual
influences between elements. Regarding the graph variables,
we use the nodes embedded with visual features to present
each element of the sample, and use the linking edges to
present whether a relation exists between two elements.
To determine the edges, we further design a pseudo-link
and propagate verification to identify the mutual influence
among elements. Afterward, we build upon the graph neural
networks (GNNs) to extract and fuse the local sub-structural
information among elements residing in each sample-level
graph, and further formulate the ZSL problem to a graph-to-
semantics mapping task for better preservation of the one-
to-one element-semantics correlation.

In summary, our contributions are three-fold:

• We first utilize the graph structure to model the samples
in ZSL, and explore the element-semantics correlation
and local sub-structure information to construct more ac-
curate and robust ZSL mapping.

• We reformulate the ZSL to a graph-to-semantics map-
ping task and convert the recognition into the sample-
level graph classification as an alternative for ZSL.

• Experimental results on ZSL and GZSL tasks demon-
strate that the proposed method can outperform other rep-

resentative methods and verify its effectiveness.

Related Work
Zero-shot Learning
Most ZSL methods are implemented by mapping the visual
features to semantic space spanned by class descriptions and
then perform nearest neighbor search (Akata et al. 2015;
Schonfeld et al. 2019). In contrast, some methods propose
to map the semantic features into visual space and point out
that using semantic space as shared latent space may reduce
the variance of features (Zhang, Xiang, and Gong 2017).
Different from the direct mappings, a few branches of them
try to learn a metric network or compatibility function that
takes paired visual and semantic features as inputs and cal-
culates their similarities (Sung et al. 2018). [Summary]: our
mapping function is similar to the first one, while we convert
the visual input into the sample-level graph and construct a
graph-to-semantics mapping to achieve the ZSL recognition.

Compared with the above conventional methods, our
model is more likely related to the fine-grained ZSL and
semantics-level graph-based ZSL. Specifically, the fine-
grained ZSL tries to make use of the concatenation of
global and local features (Ji et al. 2018; Xie et al. 2019;
Huynh and Elhamifar 2020), or learn dictionaries through
joint training with samples, attributes and labels (Chen, Cao,
and Ji 2019), to enhance the representation. Recently, an-
other branch of fine-grained method (Xie et al. 2020) ex-
tends the graph embedding into the global and local con-
catenation to further enhance the representation, which is
very similar to (Ji et al. 2018; Zhu et al. 2019). Dif-
ferently, the semantics-level graph-based ZSL utilizes the
WordNet (Miller 1995) to link each per-class semantic de-
scription and then model the class-wise correlation as a
global semantics-level graph, which can better capture the
dependencies among classes (Wang, Ye, and Gupta 2018;
Kampffmeyer et al. 2019). [Summary]: our method differs in
two aspects. First, we only use local features rather than the
concatenation with also global features. Second and more
importantly, we model the inputs as sample-level graphs and
convert the ZSL problem into a graph-to-semantics mapping
task. Thus, our method can be seen as a complementary to
the semantics-level graph-based ZSL.

GNNs for Graph Recognition
The GNNs are popular graph techniques in deep learning
that attracts increasing attention most recently. In practice,
the GNNs can be trained in a supervised or unsupervised
manner to handle multiple tasks such as node classification,
edge prediction, graph embedding, and graph classification.
Specifically, the graph classification aims at classifying an
entire graph structure to different classes (Zhang et al. 2018;
Ying et al. 2019), which has been widely used in some real-
world applications like community recognition, documents
categorization, social network analysis, drug discovery, and
so on. In this paper, we extend the graph classification to
ZSL domain, where we replace the learning targets with
class semantic descriptions to form a graph-level regression
process.



Methodology
Problem Definition
Given a train-set of seen class D = {xi, yi}Ni=1, where
xi is the input sample with class label yi belonging to m
seen classes C = {c1, c2, · · · , cm}. The goal of ZSL is
to construct a model for a set of unseen classes C ′ =
{c′1, c′2, · · · , c′v} (C ∩C ′ = ϕ), of which no sample is avail-
able. During inference, given unseen class sample x′, the
model is expected to predict its class c(x′) ∈ C ′. To this end,
some auxiliary knowledge, e.g., the semantic descriptions
denoted as s = (a1, a2, · · · , an) ∈ Rn, is required to bridge
the gaps between seen/unseen classes. The train-set can
then be further specified as D = {xi, yi, si}Ni=1, and each
seen/unseen class ci / ci′ is endowed with a semantic proto-
type pci / pci′ ∈ Rn. Thus, for each seen class sample we
have its semantic features si ∈ P = {pc1 , pc2 , · · · , pcm},
while for test unseen class sample x′, we need to obtain its
semantic features s′ ∈ Rn, and set the class label by search-
ing for the most closely related semantic prototype within
P ′ = {pc1′ , pc2′ , · · · , pcv ′} for ZSL or within P ′ ∪ P for
GZSL. In summary, the training can be described as:

argmin
W

1

N
·

N∑
i=1

L (f (ϕ (xi) ;W) , si) + φ (W) , (1)

where L (·) is the loss function and φ (·) denotes the reg-
ularization term. The f (·;W) is a mapping with trainable
parameter W that maps samples from the visual space to se-
mantic space. ϕ (·) denotes a feature extractor, e.g., a CNNs
backbone. During inference, given a test sample xtest, the
recognition can be described as:

argmax
j

Sim
(
f (ϕ (xtest) ;W) , P ′(j)

)
, (2)

argmax
j

Sim
(
f (ϕ (xtest) ;W) , {P ′ ∪ P}(j)

)
, (3)

where Sim (·) is a similarity metric. Eq. (2) is used for ZSL
task where the similarity search is limited in unseen classes,
and Eq. (3) is for GZSL task where the similarity search can
generalize to novel samples from seen classes as well.

ZSL as Sample-level Graph Recognition
Given train-set D = {xi, yi, si}Ni=1, our method has three
steps to convert the ZSL task to a graph-to-semantics map-
ping problem: 1) elements decomposition, 2) sample-level
graph construction, and 3) sample-level graph recognition.
The elements decomposition obtains several fine-grained el-
ements of a sample, which can then be presented by a well-
designed graph structure. We feed these per-sample graphs
into our modified Element-Rank-Aware (ERA) GNNs that
sequentially pass through graph convolutional layers, our
modified element ranking pooling layers, and regression lay-
ers, to reach their semantic descriptions.

Element-Rank-Aware GNNs Our modified ERA-GNNs
consist of three consecutive operations. First, the graph con-
volution layers are the same as standard graph convolutions
that responsible for extracting high-level topological-wise
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Figure 2: Element Ranking Pooling

element representations and mutual influences of samples.
Then, we design the element ranking pooling layers, which
are sensitive to the element-wise importance, to downsam-
ple and fuse the high-level features to more representative
graphical features. Last, the regression layers are convolu-
tional and dense layers that link to semantic descriptions.
Graph Convolutions - Suppose a sample-level graph (A,F)

has been given, where A ∈ {[0, 1]}n×n is the adjacency
matrix, in which the non-zero values denote the correlation
(edge) existence and weight between two elements in a sam-
ple. F ∈ Rn×d is the element feature matrix representing
that the sample-level graph has n elements and each of them
contains d-D features. The graph convolution operation in
our method can be described as:

H = δ
(
D̃− 1

2 ÃD̃− 1
2FΘ

)
, (4)

where Ã = A + I, and I is the identity matrix denotes a
self-loop in each element of the sample-level graph. D̃ =∑

jÃij is the diagonal degree matrix, and Θ ∈ Rd×d′
is

the trainable parameter matrix. δ(·) is a nonlinear activa-
tion, e.g., ReLU. The graph convolutions can be decoupled
into four process. A linear transformation FΘ is first per-
formed which maps the element features from d to m chan-
nels into the next layer. Then, ÃFΘ propagates element in-
formation to neighboring elements. Next, D̃− 1

2 ÃD̃− 1
2 nor-

malizes each row in the obtained feature matrix H. The last
nonlinear activation δ(·) performs point-wise activation and
outputs the graph convolution results. To further extract the
deep high-level multi-scale features, we can stack multiple
graph convolution layers, e.g., k layers, as:

H(k) = δ
(
D̃− 1

2 ÃD̃− 1
2H(k−1)Θ(k−1)

)
, (5)

where the obtain k sequential features
{
H(i)

}k

lr=1
can be

further downsampled and regressed by our element ranking
pooling layers and regression layers, respectively.
Element Ranking Pooling - Conventional graph poolings
usually downsample the graph in a hard way due to its
non-Euclidean structure (Gilmer et al. 2017; Ying et al.
2019), i.e., the reduced graph nodes are usually not orga-
nized and the calculation are usually mean/maximum value-
based. Such a pooling strategy fits classic graph applications
well since the structural information provides the major con-
tribution to their recognition. However, in our sample-level



graph-based ZSL, the visual information is also important
since the nodes explicitly correspond key elements of a vi-
sual sample. Thus, it is crucial to properly organize the re-
duced elements to fit the downstream ZSL recognition.

Intuitively, the elements in a sample can have different vi-
sual importance for the recognition. For example, the back
and beck may contribute more than other key elements to
recognize the seagull class. Moreover, we note that differ-
ent layers can also contain rich multi-scale visual features,
which are usually ignored in conventional graph pooling
strategies. As demonstrated in Figure 2, we design the Ele-
ment Ranking Pooling to integrate such visual information.
Specifically, we use the element degrees and weights w.r.t.
the linking edges to calculate the element importance score:

Scorei =
1

g
·

g∑
j=1

ωij ·RIi, (6)

where ωij denotes the edge-weight between element i and
j in A, and RIi is the relative importance of element i
w.r.t. the recognition of whole sample. Note ωij and RIi
can be obtained during the sample-level construction in
Sect. Sample-level Graph Construction. The parameter g is
the degree of element i, which can be easily obtained by
g = Sum(A)i. Next, we rank all elements according to their
scores and select the highest p elements to calculate its lin-
ear transformation, i.e., denoted as LT(·), into d̃-D element
features:

pE = LT(rE, p; Φ), (7)

where rE ∈ Rn×
∑

∀d′
is the ranked element matrices and Φ

denotes the transformation weight. The pooled pE ∈ Rp×d̃

(suppose the final output element are d̃-D features) is then
further fed into the regression layers to reach the semantic
descriptions.

Element Decomposition Key-point localization is usually
applied to predict a set of semantic key-points for objects
(Huang, Gong, and Tao 2017; Sarlin et al. 2019; Guo and
Farrell 2019). For example, a bird can have several standard
key-points reflecting its appearance and subtle characteris-
tics. Taking the CUB-Birds1 dataset (Wah et al. 2011b) as
an example, a bird image can be detected with 15 key-points,
of which each key-point is located at a specific element, e.g.,
forehead, beak, leg, tail, etc. These key-points can be used
to align the objects and reveal their subtle differences which
helps to recognize different fine-grained classes, e.g., bird
species. In our method, we follow the method of using a
2-dimensional probability distribution heat map of the ob-
ject to localize the key-points. Specifically, a ResNet-34 (He
et al. 2016) with the classification layer removed, is used as
the encoder. Then, by stacking three blocks consisting of one
upsampling (bilinear interpolation) layer, one convolution
layer, one batch normalization layer and one ReLU layer
each, and a final convolution layer and upsampling layer to
output the key-points location tensor. The elements decom-
position can localize several key-points of a sample, and we

1http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

can then use a cropping operation to decompose the sam-
ple (e.g., width W and height H) into several fine-grained
elements based on these key-points as:{

xp = xk − w/2
yp = yk − h/2

, (8)

where (xk, yk) is the 2-d coordinate of one key-point, w and
h are width and height of the cropped element. (xp, yp) is
the 2-d coordinate of the top left corner of the cropped ele-
ment, where xp and yp are potentially set to (W − w) and
(H − h) respectively, or set to 0, to retain the cropped el-
ement within the sample size range. These elements can be
regarded as the nodes of a sample-level graph, and each of
them is further fed into a visual feature extractor to obtain
the element features.

Sample-level Graph Construction Given the elements,
we design a verification-based pseudo-link and propa-
gate method to identify the mutual influence among them,
and further determine their linking edges. Notably, in our
method, the edges are set based on their mutual influences,
thus two linked elements are not necessarily spatially adja-
cent. To this end, we first assume that every two-elements
pair is initially established with a relation that can perform
the node propagation as a graph, and then to verify whether
or not such relation can be satisfied under certain measure-
ment. Given several elements, we specify two elements, e.g.,
i and j, are initially connected by a pseudo-link. We denote
fi and fj as element features and thus a simulated one-pass
propagation can be achieved by:

fi = fiυi + fjυij , (9)
fj = fjυj + fiυji, (10)

where υij / υji is the weight of i w.r.t. j and j w.r.t. i, re-
spectively. υi / υi are used to simulate the self-loop in graph.
Regardless of the orders and weights, we can simply use the
mean features of these two elements, i.e., 1

2 (fi + fj), to ap-
proximatively indicate whether the propagation is positive
or not for the establishment of edge between elements i and
j. Notably, such a simulated propagation is similar to two el-
ements performing graph convolution with the same weight
of 1/2 and containing a self-loop.

To verify the positivity, we train a mini-classifier based on
the whole feature representation of training samples (seen
classes only), and then to calculate the classification con-
fidence, i.e., accuracy denoted as Con(·), for each two-
elements pair on their single features fi and fj , and prop-
agated features 1

2 (fi + fj), respectively. If both conditions,
i.e.,

Con((fi + fj)/2) > Con(fi) + ε, (11)
Con((fi + fj)/2) > Con(fj) + ε, (12)

satisfied, then we say that the propagation is verified as pos-
itive and the edge is confirmed. Here, ε is a small positive
constant that controls the threshold.

Afterward, for all confirmed edges, we define the edge-
weight between elements i and j as:

ωij =
Con((fi + fj)/2)− (Con(fi) + Con(fj)) /2

max(Con(fi), Con(fj))
,

(13)



and for each single element, we define its relative impor-
tance w.r.t. the recognition of whole sample as:

RIi =
Con(fi)∑e
l=1 Con(fl)

, (14)

where ωij and RIi can reflect the strength of relation i and j
and the contribution degree of element i to the recognition,
respectively.

Training ZSL on Sample-level Graphs Finally, the train-
set can be presented as D = {(Ai,Fi) , yi, si}Ni=1. We feed
these labeled seen class sample-level graphs into our ERA-
GNNs, i.e., denoted as G(·;WG), in which we stack k graph
convolution layers to obtain k sequential features as:{

H(i)
}k

lr=1
= G(Ai,Fi;WG), (15)

where each H(i) ∈ Rn×ci is the propagated feature matrix
of lr-th layer. Each row stores an element and each column
represents a feature channel. Afterward, we use the designed
Element Ranking Pooling to downsample the the multi-scale
graphs, and obtain the ranked and pooled graph representa-
tion pE. For simplicity, we denote the whole pooling process
as ERP (·; Φ). Last, the regression layers are convolutional
and dense layers, i.e., denoted as Rgs(·;WR), that link to
semantic descriptions. Thus, the training of ZSL can be for-
malized as:

argmin
WG ,WR,Φ

1

N
·

N∑
i=1

L (Rgs (ERP (G (Ai,Fi;WG) ; Φ) ;WR) , si)

+ φ (WG) + γ (WR) .

(16)
where φ(·) and γ(·) are L2-norms that can add penalties as
model complexity increases and thus avoid overfitting.

Experiments
Experimental Setup
Dataset and evaluation metrics Following (Ji et al.
2018; Elhoseiny et al. 2017), we evaluate our method
on two widely used fine-grained datasets including CUB-
Birds (Wah et al. 2011a) and NABirds (Van Horn et al.
2015). Specifically, CUB-Birds consist of bird images cov-
ering 200 classes with 11,788 images. Each image is anno-
tated with key-point location and attribute labels. For ZSL,
150 classes of bird images act as seen classes for training,
and the remaining 50 classes are unseen classes. Each of
their prototypes is represented by a 312-dimensional seman-
tic attribute description which can present meaningful class-
level information. The NABirds is a larger dataset contain-
ing 1,011 total classes with 48,562 images. While for ZSL,
some gender specific classes are further merged, resulting
404 final classes. Among them, 323 classes are seen classes
and the remaining 81 are unseen classes. Similarly, each im-
age is also annotated with required key-point location, while
differently, the semantic descriptions of each class is an col-
lected article from Wikipedia.

Two different settings are considered in our experiments
including 1) classic ZSL and 2) generalized ZSL (GZSL).

For ZSL, all test samples belong to unseen classes, i.e.,
the model only searches for the class prototypes on unseen
classes P ′ (Eq. (2)). While for GZSL (Xian, Schiele, and
Akata 2017), the search can also generalize to novel samples
from seen classes, i.e., the model searches the class proto-
types on both seen and unseen classes {P ′ ∪ P} (Eq. (3)).

Figure 3: Localization results on ZSL setting: some exam-
ples (better viewed in color).

Table 1: Localization results on ZSL setting: PCK scores.

Key-point PCK Key-point PCK
Back 92.4 Beak 97.2
Belly 91.3 Breast 92.8
Crown 98.4 Forehead 98.0
Left-eye 98.3 Left-leg 71.3
Left-wing 89.5 Nape 97.7
Right-eye 98.7 Right-leg 74.7
Right-wing 92.3 Tail 85.5
Throat 98.0 Overall 91.6

Implementation Our method is implemented by Pytorch
and trained with NVIDIA RTX 3090 GPU. The GNNs con-
sist of four graph convolution layers and the designed ele-
ment ranking pooling layers. The regression layers are sim-
ple convolutional and dense layers that directly link to se-
mantic descriptions. As to the element decomposition, we
follow the general settings of PAIRS (Guo and Farrell 2019)
to construct the key-point localization network. Specifically,
a ResNet-34 with the classification layer removed is acted
as an encoder. Three blocks consisting of one upsampling
layer, one convolution layer, one batch normalization layer,
and one ReLU layer each, and a final convolution and up-
sampling layers are stacked to decode the key-points loca-
tion. The cropped element size w and h are both set to 56
for CUB-Birds and 224 for NABirds by an empirical inves-
tigation from the data statistics. As to the detection, we iden-
tify 15 elements for CUB-Birds and 6 elements for NABirds
due to their availability. In the experiments, we also report
the results when directly using the key-point annotations to
construct the sample-level graph. Two results are denoted as
Ours (D), i.e., detection based model, and Ours (A), i.e., an-
notation based model, respectively. When constructing the



Table 2: Comparison results of ZSL (accuracy %). ‘F’-features: GoogleNet (G), VGGNet (V), ResNet (R). The best result is
marked in red, the second in blue, and the third in bold.

Method F Fine-grained ACC (CUB-Birds) ACC (NABirds)
ESZSL (Romera-Paredes and Torr 2015) G × 48.7 24.3
JLSE (Zhang and Saligrama 2016) V × 42.1 -
SYNC (Changpinyo et al. 2016) G × 54.4 28.9
SAE (Kodirov, Xiang, and Gong 2017) G × 61.4 -
RelationNet (Sung et al. 2018) G × 62.0 -
S2GA (Ji et al. 2018) V ✓ 75.3 39.4
Chen et al. (Chen, Cao, and Ji 2019) G ✓ 58.3 33.8
GAL (Yu and Lee 2019) G × 62.5 -
Zhu et al. (Zhu et al. 2019) G ✓ 70.5 35.7
AREN (Xie et al. 2019) R ✓ 70.7 -
AMS-SFE (Guo and Guo 2020) G × 70.1 -
MPGAN (Chen et al. 2020) V ✓ 48.2 27.2
APNet (Liu et al. 2020) R × 57.7 -
RGEN (Xie et al. 2020) G ✓ 76.1 41.4
Keshari et al. (Keshari, Singh, and Vatsa 2020) R × 60.8 -
DAZLE (Huynh and Elhamifar 2020) R ✓ 64.1 35.5
LsrGAN (Vyas, Venkateswara, and Panchanathan 2020) R × 60.3 -
Xu et al. (Xu et al. 2020) R × 65.7 -
HSVA (Chen et al. 2021b) R × 65.7 -
VGSE (Xu et al. 2022) R × 35.0 -
TDCSS (Feng et al. 2022) R × 61.1 -
Ours (D) G ✓ 76.9 42.8
Ours (A) G ✓ 78.7 44.2

sample-level graph, we control the threshold ε to retain ∼= 50
and ∼= 20 edges among the sample-level graph for CUB-
Birds and NABirds, respectively. As to the visual features,
we use GoogleNet (Szegedy et al. 2015) to extract a 1024-
dimensional feature vector for each element.

Localization Results on ZSL Setting
We report the key-point localization results on CUB-Birds
based on the ZSL data setting where only seen classes are
used during training, and to detect key-points of samples
from unseen classes. The PCK (percentage of correct key-
points) score is used to measure the performance, i.e., a pre-
dicted key-point (p) is correct if its within a small neighbor-
hood of the ground truth (g):

∥p− g∥ ≤ c ∗max (hb, wb) , (17)

where (hb, wb) is the longer side of the bounding box and
c is a constant factor. The results are shown in Table 1 and
Figure 3. It can be observed that most detected key-points
are reasonable and accurate enough to be utilized as the base
points of sample elements.

Comparison on ZSL Setting
To demonstrate the effectiveness of our proposed method,
we first compare it with existing representative methods in
ZSL setting. We selected 21 competitors based on the fol-
lowing criteria: 1) published in the most recent years; 2)
cover a wide range of models; 3) they clearly represent the
state-of-the-art; and 4) all of them are under the standard
splits (Xian, Schiele, and Akata 2017). We compute and
report the multi-way classification accuracy as in previous
works. The comparison results with the selected representa-
tive competitors are shown in Table 2. It can be seen from
the results that our method outperforms all competitors with
great advantages on both dataset. Taking the more signifi-
cant CUB-Birds as an example, the prediction accuracy of

our method achieves 76.9% and 78.7% for detection and an-
notation based models, respectively. Moreover, we can also
observe that the performance of fine-grained based meth-
ods are overally better than the average result of other com-
petitors. Specifically, comparing with S2GA (Ji et al. 2018),
Chen et al. (Chen, Cao, and Ji 2019), Zhu et al. (Zhu et al.
2019), AREN (Xie et al. 2019), MPGAN (Chen et al. 2020),
RGEN (Xie et al. 2020), and DAZLE (Huynh and Elhamifar
2020) which also fall into the fine-grained ZSL models, our
method improves the prediction accuracy by a large margin
as 3.4%, 20.4%, 8.2%, 8.0%, 30.5%, 2.6% and 14.6%, re-
spectively, which fully demonstrate the effectiveness of our
method.

Comparison on GZSL Setting
In Table 3, we compare our method with 23 competitors on
GZSL setting (Xian, Schiele, and Akata 2017). For the gen-
eralized ZSL, we compute the average per-class prediction
accuracy on test images from unseen classes (U) and seen
classes (S), respectively, and report the Harmonic Mean cal-
culated by H = (2× U × S) / (U + S), which can quan-
tify the aggregate performance across both seen and unseen
classes. It can be seen from the results that, although most of
these competitors cannot retain the same level performance
on both seen and unseen classes, our method can achieve
the best balanced prediction accuracy. For example, ESZSL
(Romera-Paredes and Torr 2015), SYNC (Changpinyo et al.
2016) and SAE (Kodirov, Xiang, and Gong 2017) have a
very large margin, i.e., 51.2%, 59.4% and 50.1%, between
their accuracy of seen and unseen classes in CUB-Birds,
which result in poor performance on Harmonic Mean. In
contrast, our method can obtain both comparative results on
unseen classes and seen classes as 52.3% / 71.1% and 38.8%
/ 54.6%, for CUB-Birds and NABirds, respectively, and thus
results in the best result of Harmonic Mean as 60.3% and
45.5%, respectively. Our method outperforms all competi-
tors for the most balanced prediction accuracy which makes



Table 3: Comparison results of GZSL (accuracy %). ‘F’-features: GoogleNet (G), VGGNet (V), ResNet (R). The best result is
marked in red, the second in blue, and the third in bold.

Method F Fine-grained U S HM (CBU-Birds) U S HM (NABirds)
ESZSL (Romera-Paredes and Torr 2015) V × 12.6 63.8 21.0 13.5 44.2 20.7
SYNC (Changpinyo et al. 2016) G × 11.5 70.9 19.8 16.3 49.5 24.5
SAE (Kodirov, Xiang, and Gong 2017) G × 7.8 57.9 29.2 - - -
RelationNet (Sung et al. 2018) G × 38.1 61.1 47.0 - - -
f-CLSWGAN (Xian et al. 2018) R × 43.7 57.7 49.7 - - -
SE-GZSL (Kumar Verma et al. 2018) R × 41.5 53.3 46.7 - - -
SP-AEN (Chen et al. 2018) R × 34.7 70.6 46.6 - - -
Zhu et al. (Zhu et al. 2019) V ✓ 36.7 71.3 48.5 28.6 53.4 37.2
SGAL (Yu and Lee 2019) G × 40.9 55.3 47.0 - - -
DASCN (Ni, Zhang, and Xie 2019) R × 45.9 59.0 51.6 - - -
AREN (Xie et al. 2019) R ✓ 38.9 78.7 52.1 31.1 53.5 39.3
APNet (Liu et al. 2020) R × 55.9 48.1 51.7 - - -
Keshari et al. (Keshari, Singh, and Vatsa 2020) R × 44.8 59.9 51.3 - - -
DAZLE (Huynh and Elhamifar 2020) R ✓ 65.3 42.0 51.1 39.7 44.5 42.0
LsrGAN (Vyas, Venkateswara, and Panchanathan 2020) R × 47.7 57.0 51.9 - - -
FREE (Chen et al. 2021a) R × 55.7 59.9 57.7 - - -
BZSL+Attributes (Badirli et al. 2021) R ✓ 31.5 50.6 38.8 26.4 33.2 29.4
BZSL+Word Vectors (Badirli et al. 2021) R ✓ 22.4 45.0 29.9 25.0 30.8 27.6
HSVA (Chen et al. 2021b) R × 52.7 58.3 55.3 - - -
VGSE (Xu et al. 2022) R × 24.1 45.7 31.5 - - -
TDCSS (Feng et al. 2022) R × 44.2 62.8 51.9 - - -
SE-GZSL (Kim, Shim, and Shim 2022) R × 60.3 53.1 56.4 - - -
CE-GZSL+SDFA2 (Zhao et al. 2022) R × 59.2 59.6 54.0 - - -
Ours (D) G ✓ 51.2 68.4 58.6 37.1 51.2 43.0
Ours (A) G ✓ 52.3 71.1 60.3 38.8 54.6 45.4

it better fits a more realistic application scenario.

Mapping Robustness
We further conduct the evaluation of mapping robustnes on
our method on CUB-Birds. Given the trained model, we map
the unseen class samples from the visual to semantic space.
With these obtained semantic features of samples, we apply
t-SNE (Van der Maaten and Hinton 2008) to visualize them
in a 2D map. We show the visualization results on two so-
tas SAE (Kodirov, Xiang, and Gong 2017), AMS-SFE (Guo
and Guo 2020), and our method under the ZSL setting in
Figure 4(a), Figure 4(b) and Figure 4(c), respectively. It can
be seen from our method that only a small portion of unseen
class samples are shifted in the semantic space. Moreover,
the obtained semantic features are also more continuous and
aggregated. These merits demonstrate that our method can
significantly mitigate the domain bias problem.

Conclusion
This paper proposed a novel fine-grained ZSL framework
based on sample-level graph, to address the challenging do-
main bias problem. Our method decomposes samples into
several fine-grained elements to be presented as a graph
structure, in which nodes and edges are different elements
and relations between them. Taking advantages from re-
cently developed GNNs, we reformulate the ZSL problem
to a graph-to-semantics mapping task which can better ex-
ploit element-semantics correlation and local sub-structure
information in samples. Experimental results verified the ef-
fectiveness of our method.
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